EVENTO
Mixed Hybrid Discontinuous Galerkin Methods For Elliptic Interface Problems
Tipo de evento: Defesa de Tese de Doutorado
Both fitted and unfitted mixed hybrid discontinuous Galerkin (MHDG) finite element methods are proposed in this thesis to solve the elliptic interface problems. For the fitted case, the problems can be solved directly by MHDG. For the unfitted case, the broken base functions (unnecessary to satisfy the jump conditions) are introduced to those elements which are cut across by interface. Unlike to the immersed interface finite element methods (IIFEM), the two jump conditions are enforced weakly by the MHDG variational formulations. So, our unfitted interface MHDG can be applied more easily than IIFEM to general cases when the exact jump base function cannot be constructed. Numerical results on convergence and sensitivities of both interface location and different diffusion of the proposed methods are presented and discussed. Numerical analysis for the fitted case is also given
Data Início: 22/01/2015 Hora: 10:00 Data Fim: 22/01/2015 Hora: 14:00
Local: LNCC - Laboratório Nacional de Computação Ciêntifica - Auditorio A
Aluno: Hector Andres Vargas Poblete - Laboratório Nacional de Computação Científica - LNCC
Orientador: Jiang Zhu - Laboratório Nacional de Computação Científica - LNCC
Participante Banca Examinadora: Abimael Fernando Dourado Loula - Laboratório Nacional de Computação Científica - LNCC Eduardo Gomes Dutra do Carmo - Universidade Federal do Rio de Janeiro - UFRJ Jiang Zhu - Laboratório Nacional de Computação Científica - LNCC Luiz Bevilacqua - Universidade Federal do Rio de Janeiro - UFRJ
Suplente Banca Examinadora: João Nisan Correia Guerreiro - Laboratório Nacional de Computação Científica - LNCC Philippe Devloo - UNICAMP -