EVENTO
A rational framework for dynamic homogenization at finite wavelengths and frequencies
Tipo de evento: Seminário LNCC
In this study, we establish an inclusive paradigm for the homogenization of scalar wave motion in periodic media (including the source term) at finite frequencies and wavenumbers spanning the first Brillouin zone. We take the eigenvalue problem for the unit cell of periodicity as a point of departure, and we consider the projection of germane Bloch wave function onto a suitable eigenfunction as descriptor of effective wave motion. For generality the finite wavenumber, finite frequency (FW-FF) homogenization is pursued in Rd via second-order asymptotic expansion about the apexes of wavenumber quadrants comprising the first Brillouin zone, at frequencies near given (acoustic or optical) dispersion branch. We also consider the junctures of dispersion branches and dense clusters thereof, where the asymptotic analysis reveals several distinct regimes driven by the parity and symmetries of the germane eigenfunction basis. In the case of junctures, one of these asymptotic regimes is shown to describe the so-called Dirac points, that are relevant to the phenomenon of topological insulation. On the other hand, the effective model for nearby solution branches is found to invariably entail a Dirac-like system of equations that describes the interacting dispersion surfaces as blunted cones. We illustrate the analytical developments by several examples, including the Greens function near the edge of a band gap and clusters of nearby dispersion surfaces.
Data Início: 20/05/2019 Hora: 14:00 Data Fim: Hora: 15:30
Local: LNCC - Laboratório Nacional de Computação Ciêntifica - Auditorio A
Comitê Organizador: Bojan Guzina - University of Minnesota, USA - UMN - guzin001@umn.edu